# **Thulium**



## **General Information**

### **Discovery**

Thulium was discovered by P.T. Cleve in 1879 in Uppsala, Sweden.

#### **Appearance**

Thulium is a silvery metal with a bright lustre.

#### **Source**

Thulium is found principally in the mineral monazite, from which it is extracted by ion exchange and solvent extraction. It can also be isolated by reduction of the anhydrous fluoride with calcium metal, or reduction of the oxide with lanthanum metal.

#### **Uses**

When irradiated in a nuclear reactor, thulium produces an isotope that emits X-rays. A "button" of this isotope is used to make a lightweight, portable X-ray machine for medical use. The "hot" thulium is replaced every few months. Otherwise this element is little used.

## **Biological Role**

Thulium has no known biological role, and is non-toxic.

#### **General Information**

Thulium tarnishes in air and reacts with water. It is soft, malleable and ductile, and can be cut with a knife.

## **Physical Information**

Atomic Number 69

Relative Atomic Mass (12C=12.000) 168.93

Melting Point/K 1818

Boiling Point/K 2220

Density/kg m<sup>-3</sup> 9321 (293K)

Ground State Electron Configuration [Xe]4f<sup>13</sup>6s<sup>2</sup>

Electron Affinity (M-M<sup>-</sup>)/kJ mol<sup>-1</sup> 50

# Key Isotopes

Nuclide <sup>169</sup>Tm <sup>170</sup>Tm

Atomic mass 168.9

Natural abundance 100% 0%

Half-life stable 134 days

## Ionisation Energies/kJ mol <sup>-1</sup>

 $M - M^{+}$  596.7

 $M^+ - M^{2+}$  1163

 $M^{2+} - M^{3+}$  2285

 $M^{3+} - M^{4+}$  4119

 $M^{4+} - M^{5+}$ 

 $M^{5+} - M^{6+}$ 

 $M^{6+} - M^{7+}$ 

M<sup>7+</sup> - M<sup>8+</sup>

M<sup>8+</sup> - M<sup>9+</sup>

 $M^{9+}$  -  $M^{10+}$ 

## Other Information

Enthalpy of Fusion/kJ mol<sup>-1</sup> 18.4

Enthalpy of Vaporisation/kJ mol<sup>-1</sup> 247

**Oxidation States** 

Main Tm<sup>III</sup>

Others Tm<sup>II</sup>

Covalent Bonds/kJ mol<sup>-1</sup>

Not applicable