Rutherfordium

General Information

Discovery

The two different isotopes of rutherfordium were discovered in 1964 and 1969 by various parties at Dubna, Moscow and Berkeley, California respectively.

Appearance

Unknown, but probably metallic grey in appearance.

Source

A transuranium element created by bombarding ²⁴⁹Cf with ¹²C nuclei.

Uses

Unknown.

Biological Role

None.

General Information

Two separate groups have claimed to be the discoverers of the element, due to two differing isotopes. A synthetic element created via nuclear bombardment, few atoms have ever been made and the properties of rutherfordium are very poorly understood. It is a radioactive metal and is of research interest only.

Physical Information

Atomic Number 104

Relative Atomic Mass (¹²C=12.000) 261.11

Melting Point/K 2400 (estimated)

Boiling Point/K 5800 (estimated)

Density/kg m⁻³ 23,000

Ground State Electron Configuration [Rn]5f¹⁴6d²7s²

Electron Affinity (M-M⁻)/kJ mol⁻¹ Not available

Key Isotopes

²⁵³Rf ²⁵⁵Rf ²⁵⁸Rf ²⁵⁶Rf ²⁵⁷Rf ²⁵⁹Rf Nuclide Atomic mass 257.10 258.10 259.11 0% 0% 0% Natural abundance 0% 0% 0% Half-life 1.5 secs 1.4 secs 7x10⁻³secs 4.8 secs 0.013 secs 3.0 secs ²⁶⁰Rf ²⁶¹Rf ²⁶²Rf Nuclide 260.11 261.11 Atomic mass

Natural abundance 0% 0% 0%

Half-life 0.020 secs 65 secs 0.047 secs

Ionisation Energies/kJ mol -1

M - M⁺ 490 (est)

 M^+ - M^{2+}

 $M^{2+} - M^{3+}$

 $M^{3+} - M^{4+}$

M⁴⁺ - M⁵⁺

 $M^{5+} - M^{6+}$

 $M^{6+} - M^{7+}$

 $M^{7+} - M^{8+}$

 $M^{8+} - M^{9+}$

 $M^{9+} - M^{10+}$

Other Information

Enthalpy of Fusion/kJ mol⁻¹ Not available

Enthalpy of Vaporisation/kJ mol⁻¹ Not available

Oxidation States

Rf^{IV} has been predicted as the most stable.

Covalent Bonds/kJ mol⁻¹

Not available