Polonium

General Information

Discovery

Polonium was discovered in 1898 in Paris, France. It was the first element discovered by Marie Curie, while she was investigating the cause of radioactivity in pitchblende.

Appearance

Polonium is a silvery-grey, radioactive metal.

Source

Polonium is a very rare natural element. It is obtained when natural bismuth, ²⁰⁹Bi, is bombarded by neutrons to give ²¹⁰Bi, the parent of polonium.

Uses

Polonium is an alpha-emitter, and is used as an alpha-particle source for scientific research in the form of a thin film on a stainless steel disc. It is also used as a heat source in space equipment. It can be mixed or alloyed with beryllium to provide a source of neutrons.

Biological Role

Polonium has no known biological role. It is highly toxic due to its radioactivity.

General Information

Polonium is readily dissolved in dilute acids, but is only slightly soluble in alkalis. A milligram of polonium emits as many alpha particles as 5 grams of radium. The energy released by its decay is so large that a capsule containing about 0.5 grams reaches a temperature above 500K.

Physical Information

Atomic Number 84

Relative Atomic Mass (¹²C=12.000) 209 (radioactive)

Melting Point/K 527
Boiling Point/K 1235

Density/kg m⁻³ 9320 (293K)

Ground State Electron Configuration [Xe]4f¹⁴5d¹⁰6s²6p⁴

Electron Affinity (M-M⁻)/kJ mol⁻¹ 186

Key Isotopes

²⁰⁹Po ²¹⁰Po ²¹¹Po ²¹⁶Po ²¹⁸Po Nuclide Atomic mass 208.98 209.98 210.99 216.0 218.0 0% Natural abundance trace trace trace trace Half-life 103 yrs 138.4 days 0.52 secs 0.15 secs 3.05 mins

Ionisation	Enorgies	1	lmal	-1
ionisation	Liter gres/	NU	, ,,,,	

М	- M ⁺	812
M^{+}	- M ²⁺	1800
M^{2+}	- M ³⁺	2700
M ³⁺	- M ⁴⁺	3700
M^{4+}	- M ⁵⁺	5900
M ⁵⁺	- M ⁶⁺	7000
M ⁶⁺	- M ⁷⁺	10800
M^{7+}	- M ⁸⁺	12700
M ⁸⁺	- M ⁹⁺	14900
M ⁹⁺	- M ¹⁰⁺	17000

Other Information

Enthalpy of Fusion/kJ mol⁻¹ 10
Enthalpy of Vaporisation/kJ mol⁻¹ 100.8

Oxidation States

Main Po^{IV}

Others Po^{-II} , Po^{II} , Po^{VI}

Covalent Bonds/kJ mol⁻¹

Not applicable