# Molybdenum



### **General Information**

#### Discovery

Molybdenum was discovered by P.J. Hjelm in 1781 in Uppsala, Sweden.

#### Appearance

The metal is silver-white and fairly soft when pure. It is usually obtained as a grey powder.

#### Source

The main source of this element is the ore molybdenite. Molybdenum can be obtained form this ore, but most commercial production is as a by-product of copper production.

#### Uses

Molybdenum is a valuable alloying agent, as it contributes to the hardness and toughness of quenched and tempered steels. It is also used in certain nickel-based alloys which are heat-resistant and corrosion-resistant to chemical solutions. It has found use in electrical and nuclear applications, and as a catalyst in the refining of petroleum.

#### **Biological Role**

Molybdenum is an essential element for animals and plants. If soil lacks this element the land is barren.

# **Physical Information**

| Atomic Number                                              | 42                                  |
|------------------------------------------------------------|-------------------------------------|
| Relative Atomic Mass ( <sup>12</sup> C=12.000)             | 95.94                               |
| Melting Point/K                                            | 2890                                |
| Boiling Point/K                                            | 4885                                |
| Density/kg m <sup>-3</sup>                                 | 10220 (293K)                        |
| Ground State Electron Configuration                        | [Kr]4d <sup>5</sup> 5s <sup>1</sup> |
| Electron Affinity (M-M <sup>-</sup> )/kJ mol <sup>-1</sup> | 114                                 |

# Key Isotopes

Г

| Nuclide           | <sup>92</sup> Mo | <sup>94</sup> Mo  | <sup>95</sup> Mo | <sup>96</sup> Mo | <sup>97</sup> Mo | <sup>98</sup> Mo |
|-------------------|------------------|-------------------|------------------|------------------|------------------|------------------|
| Atomic mass       | 91.91            | 93.90             | 94.91            | 95.90            | 96.91            | 97.91            |
| Natural abundance | 14.84%           | 9.25%             | 15.92%           | 16.68%           | 9.55%            | 24.13%           |
| Half-life         | stable           | stable            | stable           | stable           | stable           | stable           |
|                   |                  |                   |                  |                  |                  |                  |
| Nuclide           | <sup>99</sup> Mo | <sup>100</sup> Mo |                  |                  |                  |                  |
| Atomic mass       |                  | 99.91             |                  |                  |                  |                  |
| Natural abundance | 0%               | 9.63%             |                  |                  |                  |                  |
| Half-life         | 66.69 h          | stable            |                  |                  |                  |                  |
|                   |                  |                   |                  |                  |                  |                  |

| Ionisation Energies/kJ mol <sup>-1</sup> |                    |       |  |  |
|------------------------------------------|--------------------|-------|--|--|
| м                                        | - M <sup>+</sup>   | 685   |  |  |
| M+                                       | - M <sup>2+</sup>  | 1558  |  |  |
| M <sup>2+</sup>                          | - M <sup>3+</sup>  | 2621  |  |  |
| M <sup>3+</sup>                          | - M <sup>4+</sup>  | 4480  |  |  |
| M4+                                      | - M <sup>5+</sup>  | 5900  |  |  |
| M <sup>5+</sup>                          | - M <sup>6+</sup>  | 6560  |  |  |
| M <sup>6+</sup>                          | - M <sup>7+</sup>  | 12230 |  |  |
| M <sup>7+</sup>                          | - M <sup>8+</sup>  | 14800 |  |  |
| M <sup>8+</sup>                          | - M <sup>9+</sup>  | 16800 |  |  |
| M <sup>9+</sup>                          | - M <sup>10+</sup> | 19700 |  |  |

# Other InformationEnthalpy of Fusion/kJ mol<sup>-1</sup>27.6Enthalpy of Vaporisation/kJ mol<sup>-1</sup>589.9Oxidation StatesVMainMo<sup>VI</sup>OthersMo<sup>-II</sup>, Mo<sup>O</sup>, Mo<sup>I</sup>, Mo<sup>II</sup>, Mo<sup>III</sup>, Mo<sup>IV</sup>, Mo<sup>V</sup>Covalent Bonds/kJ mol<sup>-1</sup>Not applicable