Bohrium

General Information

Discovery

Bohrium was first made in 1981 by Peter Armbruster, Gottfried Munzenberg and co-workers at the GSI in Darmstadt, Germany.

Appearance

Unknown, but probably metallic grey in appearance.

Source

A transuranium element, only a few atoms of bohrium have ever been made, and it will probably never be isolated in observable quantities. Created by the so-called "cold fusion" method, in which a target of bismuth is bombarded with atoms of chromium.

Uses

Unknown

Biological Role

None

General Information

A synthetic element created via nuclear bombardment, few atoms have ever been made and the properties of bohrium are very poorly understood. It is a radioactive metal which does not occur naturally and is of research interest only. The first atoms were made via a nuclear reaction, the cold fusion method:

 209 Bi + 54 Cr \rightarrow 262 Bh + n

Physical Information

Atomic Number 107

Relative Atomic Mass (12C=12.000) 262.12

Melting Point/K Not available Boiling Point/K Not available

Density/kg m⁻³ 37,000 (estimated)

[Rn]5f¹⁴6d⁵7s² Ground State Electron Configuration

Electron Affinity (M-M⁻)/kJ mol⁻¹ Not available

Key Isotopes

²⁶¹Bh ²⁶²Bh ^{262m}Bh Nuclide

Atomic mass 261.12 262.12

0% Natural abundance 0% 0%

8x10⁻³ secs Half-life 0.012 secs 0.1 secs

Ionisation Energies/kJ mol -1

- M⁺ 660 (est)

 M^+ - M^{2+}

 $M^{2+} - M^{3+}$

 $M^{3+} - M^{4+}$

- M⁵⁺

- M⁶⁺

- M⁷⁺

- M⁸⁺

 M^{9+} - M^{10+}

Other Information

Enthalpy of Fusion/kJ mol-1 Not available

Enthalpy of Vaporisation/kJ mol⁻¹ Not available

Oxidation States

Bh^{VII} has been predicted as probably the most stable state.

Covalent Bonds/kJ mol⁻¹

Not available