Beryllium

General Information

Discovery

Discovered as the oxide by Vauquelin in beryl and in emeralds in 1798. The metal was isolated in 1828 by Wohler independently by the action of potassium on beryllium chloride.

Appearance

Beryllium is a metal, steel grey in colour.

Source

Beryllium is found in some 30 mineral species, the most important of which are bertrandite, beryl, chrysoberyl and phenacite. Aquamarine and emerald are precious forms of beryl.

Beryl and bertrandite are the most important commercial sources of the element and its compounds. The metal is usually prepared by reducing beryllium fluoride with magnesium metal.

Uses

Beryllium is used as an alloying agent in producing beryllium copper, which is used for springs, electrical contacts, spot-welding electrodes and non-sparking tools. It has found application as a structural material for high-speed aircraft, missiles, spacecraft and communication satellites, and is also extensively used in the space shuttle. Because beryllium is relatively transparent to X-rays, ultra-thin beryllium foil is finding use in X-ray lithography for the reproduction of micro-miniature integrated circuits.

Beryllium is also used in nuclear reactors as a reflector or moderator. The oxide has a very high melting point and is also used in nuclear work as well as having ceramic applications.

Biological Role

Beryllium and its salts are both toxic and carcinogenic.

General Information

Beryllium is one of the lightest of all metals, and has one of the highest melting points. Its modulus of elasticity is about one third greater than that of steel. It resists attack by concentrated nitric acid, has excellent thermal conductivity and is nonmagnetic. It has a high permeability to X-rays, and when bombarded by alpha particles produces neutrons. At ordinary temperatures it resists oxidation in air.

Physical Information

Atomic Number 4

Relative Atomic Mass (¹²C=12.000) 9.012

Melting Point/K 1551

Boiling Point/K 3243 (under pressure)

Density/kg m⁻³ 1847.7 (293K)

Ground State Electron Configuration [He]2s²

Electron Affinity (M-M⁻)/kJ mol⁻¹ -18

Key Isotopes

¹⁰Be ⁷Be 9Be Nuclide Atomic mass 7.017 9.012 10.014 0% 0% Natural abundance 100% 2.5x10⁶ yrs Half-life 53.37days stable

Ionisation Energies/kJ mol ⁻¹

 $M - M^{+}$ 899.4 $M^{+} - M^{2+}$ 1757.1 $M^{2+} - M^{3+}$ 14848 $M^{3+} - M^{4+}$ 21006

Other Information

Enthalpy of Fusion/kJ mol⁻¹ 9.80 Enthalpy of Vaporisation/kJ mol⁻¹ 308.8

Oxidation States

Main Be^{II}

Covalent Bonds/kJ mol⁻¹

 Be - H
 226

 Be - O
 523

 Be - F
 615

 Be - Cl
 293